Constructive Meta-level Feature Selection Method Based on Method Repositories

نویسندگان

  • Hidenao Abe
  • Takahira Yamaguchi
چکیده

Feature selection is one of key issues related with data pre-processing of classification task in a data mining process. Although many efforts have been done to improve typical feature selection algorithms (FSAs), such as filter methods and wrapper methods, it is hard for just one FSA to manage its performances to various datasets. To above problems, we propose another way to support feature selection procedure, constructing proper FSAs to each given dataset. Here is discussed constructive metalevel feature selection that re-constructs proper FSAs with a method repository every given datasets, de-composing representative FSAs into methods. After implementing the constructive meta-level feature selection system, we show how constructive meta-level feature selection goes well with 34 UCI common data sets, comparing with typical FSAs on their accuracies. As the result, our system shows the high performance on accuracies with lower computational costs to construct a proper FSA to each given data set automatically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection in Structural Health Monitoring Big Data Using a Meta-Heuristic Optimization Algorithm

This paper focuses on the processing of structural health monitoring (SHM) big data. Extracted features of a  structure are reduced using an optimization algorithm to find a minimal subset of salient features by removing noisy, irrelevant and redundant data. The PSO-Harmony algorithm is introduced for feature selection to enhance the capability of the proposed method for processing the  measure...

متن کامل

Diagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methods

Data analysis in cardiovascular diseases is difficult due to large massive of information. All of features are not impressive in the final results. So it is very important to identify more effective features. In this study, the method of feature selection with binary cuckoo optimization algorithm is implemented to reduce property. According to the results, the most appropriate classification fo...

متن کامل

Developing a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature

According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...

متن کامل

A GRASP algorithm for fast hybrid

8 Feature subset selection is a key problem in the data-mining classification task that helps to obtain more compact and understandable models without degrading (or even improving) their performance. In this work we focus on FSS in high-dimensional datasets, that is, with a very large number of predictive attributes. In this case, standard sophisticated wrapper algorithms cannot be applied beca...

متن کامل

Constructive Induction Using a Non-Greedy Strategy for Feature Selection

We present a method for feature construction and selection that finds a minimal set of conjunctive features that are appropriate to perform the classification task. For problems where this bias is appropriate, the method outperforms other constructive induction algorithms and is able to achieve higher classification accuracy. The application of the method in the search for minimal multi-level b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006